In collaboration with Iranian Association for Energy Economics(IRAEE) and Scientific Association of Defence Economics of Iran(SADEI)

Document Type : modeling

Authors

1 Assistant Professor, Faculty of Economics, Kharazmi University, Tehran, Iran

2 Professor, Faculty of Industrial Engineering, Tehran University, Tehran, Iran

3 M.A. in Socio-Economic Systems engineering, Planning of Energy systems, Kharazmi University, Tehran, Iran

Abstract

Various studies in electrical energy markets show that the active participation of the demand side in the electricity market, under the title of participation in demand response programs, leads to lower electricity prices, elimination of transmission line density, increasing of network security and improving the liquidity of the market. Accordingly, and in order to get the most out of these programs, it is first necessary to provide an economic model and use it to increase the willing of clients to participate. In this study, a simulation of a economic model of demand response has been performed based on price elasticity of demand and utility function. Since the demand of electricity depends on various elements of decision, such as the price of electricity, level of participation, the value of incentives and penalties specified in the demand response plans, it has been attempted to simulate them in an economical proposal. The proposed model has been evaluated using data related to the city of Tehran. And the results of the simulation have been presented in different scenarios. The results show that time-based rate programs are not sensitive to elasticity, and in any case, changing elasticity is not a determining factor in choosing the optimal policy for market decision makers, and only by changing elasticity, technical and economic indicators can be improved. But incentive-based programs and combined programs are sensitive to elasticity, and changing elasticity, in addition to improving technical and economic indicators, is a determining factor in choosing the optimal policy for market decision makers. 

Keywords

  1. اعلمی، حبیب اله؛ یوسفی، غلامرضا و محسن پارسا مقدم (1387)، "تاثیر برنامه های پاسخگویی بار بر منحنی مصرف برق کشور"، نشریه  مهندسی برق و مهندسی کامپیوتر ایران، سال ششم، شماره چهارم، صص 316-308.

    معصومی میری، علی و امیرحسین کیالاشکی (1398)، "طراحی بهینه برنامه پاسخگویی بار در شبکه هوشمند با هدف کمینه سازی هزینه و حداکثر سازی سطح رفاه مشترکین"، سومین کنفرانس بین المللی نوآوری و تحقیق در علوم مهندسی

    کاظم پور، سید مهدی ؛ اشکان عبدالی، سوسن و زهرا عابدی (1398)، "اجرای بهینه برنامه پاسخگویی بار TOU با ارائه یک مدل اقتصادی مربوط به رفتار مشترکین برق خانگی"، نشریه انرژی ایران، دوره بیست ویک، شماره یک، صص 27-5.

    کریمی، حمید و شهرام جدید (1399)، "تعیین قیمت بهینه برای برنامه های پاسخگویی بار با هدف بهبود همزمان سود مصرف کنندگان و ضریب بار شبکه"، نشریه مهندسی برق و الکترونیک ایران، دوره هفدهم، شماره دوم.

     Aalami, H. A.; Parsa Moghaddam, M & G. R.Yousefi    (2010), “Demand Response Modeling Considering Interruptible/Curtailable Loads and Capacity Market Programs”, Applied Energy, 87:243-250

    Aalami, H. A., Parsa Moghaddam, M., & Yousefi, G. R. (2015). “Evaluation of Nonlinear Models for Time-Based Rates Demand Response Programs”. Electric Power and Energy Systems, 65:282-290.

    Albadi, M. H., & El-Saadany, E. F. (2008 ). “A summary of demand response in electricity markets”. Electric Power Systems Research, 78)11(.

    Centolella, P. (2010). “The Integration of Price Responsive Demand in to Regional Transmission Organization (RTO) Wholesale Power Markets and System Operations”. Energy, 35(4), pp. 1568-1574.

    Federal Energy Regulatory Commission Staff, (2006-2009). “Assessment of Demand Response and Advanced Metering”, Federal Energy Regulatory Commission, FERC.

    FERC, (2006). “Regulatory Commission Survey on Demand Response and Time Based Rate Programs/Tariffs”. >http://www.ferc.gov<.

    IEA (2004-2009),  Strategic Plan for the IEA Demand Side Management Program. <http://www. iea.org>.

    Khajavi, P., Monsef, H., & Abniki, H. (2010). “ Load Profile Reformation Through Demand Response Programs Using Smart Grids”. Modern Electric Power Systems (MEPS) Proceedings of the International System,1-6.

    Kirschen, D. S., Strbac, G., & Cumperayot, p. (2000). “Factoring the Elasticity of Demand in Electricity Price”. IEEE TransactionsPower Systems, 15(2): 612-617.

    Kirschen, D. S., Strbac, G. (2004). “Fundamentals of Power System Economics”. John Wiley & Sons.

    Palensky, P., & Dietrich, D. (2011). “Demand Side Management: Demand Response, Intelligent Energy System, and Smart Load”. IEEE Transactions on Industrial Information, 7(3): 381-388

    Pereira, R., Fagundes, A., Melício, R., Mendes, V. M. F., Figueiredo, J., Martins, J., & Quadrado, J.C. (2016). “A Fuzzy Clustering Approach to a Demand Response Model”. Electrical Power and Energy  Systems, 81:184-192.

    Schweppe, F. c.,Caramanis, F. C., Tabors, R. D. A., & Bohn, R. E. (1988). “Spot Pricing of Electricity”. Boston, MA: Kluwer Academic Publishers.

    1. S. Department of Energy, Energy Policy Act of 2005. (2006). Section 1252, 372-375.

    Wellinghoff, J., (2006). “Collaborative Dialog on Demand Response”, 12, > http:// www.ferc.gov<.