In collaboration with Iranian Association for Energy Economics(IRAEE) and Scientific Association of Defence Economics of Iran(SADEI)

Document Type : modeling

Authors

1 Associate Professor of Economics, The Institute for Trade Studies and Research (ITSR)

2 Researcher of The Institute for Trade Studies and Research (ITSR)

3 Ph.D. Condidate in Economics at Razi University and Researcher of The Institute for Trade Studies and Research (ITSR)

Abstract

The manufacture of machinery and equipment has one of the largest production value chains among different industries and the products of these industries are widely used as intermediate goods in other industries. In this paper, the production function, Average elasticity, marginal elasticity, substitution elasticity, and elasticities of types of energy for the nine selected activities of the machinery and equipment industries have been estimated by using the Translog production function and seasonal statistics and information of the years 2002(2)-2019 (1).The results show that the marginal elasticities of labor, capital stock, and energy are positive for all the production activities. The average elasticities of employment and energy in three activities the manufacture of pumps, compressors, taps, and valves (2813), manufacture of bearings, gears, gearing, and driving elements (2814), manufacture of machinery for textile, apparel, and leather production (2826) are more than the other activities. The manufacture of engines and turbines except aircraft, vehicle, and cycle engines (2811), manufacture of machinery for metallurgy (2823), and manufacture of the other special-purpose machinery (2829), have the most average production elasticity with respect to the capital stock and energy, respectively. In the manufacture of bearings, gears, gearing, and driving elements (2814), manufacture of agricultural and forestry machinery (2821), manufacture of machinery for mining, quarrying, and construction (2824), and manufacture of machinery for textile, apparel, and leather production (2826), the estimated coefficients for the substitution elasticities between capital stock and employment as well as the substitution elasticities between capital stock and energy are positive that it indicates the inputs are substitute, In the manufacture of pumps, compressors, taps, and valves (2813) and the manufacture of the other special-purpose machinery (2829), there is a substitution relationship between only the two inputs of capital stock and employment. Substitution relations between energy and employment for the three activities of manufacture of bearings, gears, gearing, and driving elements (2814), manufacture of engines and turbines, except aircraft, vehicle, and cycle engines (2811), and manufacture of machinery for metallurgy (2823) has been observed.

Keywords

اسلاملوئیان، کریم و استادزاد، علی‌حسین (1395). برآورد تابع تولید مناسب برای ایران با وجود نهاده انرژی و تحقیق و توسعه: روش الگوریتم ژنتیک، فصلنامه پژوهشهای اقتصادی (رشد و توسعه پایدار)، 16(1):48-21.
سیدنظری، مریم و فلسفیان، آزاده (1398). اندازه گیری کارایی فنی زعفرانکاران شهرستان مرند. دومین کنفرانس بین المللی و ششمین کنفرانس ملی کشاورزی
عطرکار‌ روشن، صدیقه و رسولی, فاطمه (1394). اندازه گیری و تحلیل بهره‌وری عوامل تولید (مطالعه موردی: بخش صنعت استان کردستان). مدیریت بهره‌وری، تابستان، 7-26.
محتشمی، تکتم؛ کرباسی، علیرضا و زنده‌دره غریبی، بهاره (1395). تحلیل اقتصادی تولید و مقایسه کارایی فنی مزارع کوچک و بزرگ زعفران در استان خراسان رضوی، زراعت و فناوری زعفران،  4 (2)، 119-132.
نورانی‌آزاد، سمانه و خدادادکاشی، فرهاد (1398). ارزیابی کارایی و رشد بهره‌وری صنعت حمل و نقل مسافربری: کاربرد تابع تجزیه‌پذیر مرزی. فصلنامه برنامه‌ریزی و بودجه. ۲۴ (۲) :۳۱-۵۸.
مرکز آمار ایران، نتایج آمارگیری از کارگاه‌های صنعتی دارای 10 نفر کارکن و بیشتر، سال‌های مختلف ، https://www.amar.org.ir.     
Alvarez, M. & Lawrence, N. D. (2009). Sparse convolved Gaussian processes for multi-output regression. In NIPS 21, 57–64.
Barua, A., Goldar, B. and Sharma, H. (2015). The Role of Technological Conditions of Production in Explaining India's Manufacturing Growth, 1998-99 to 2007-08: Some Policy Perspectives. Jawaharlal Nehru University, 4, 1-49.
Christensen, L. R., Jorgenson, D. W. & Lau, L. J. (1973).  Transcendental Logarithmic Production Frontiers, 29-45.
Erickson, K., Moss, C. B., Nehring, R. & Eldon B. (2003). A Translog Cost Function Analysis of U. S Agriculture: 1948-99, For Presentation at the Western Agricultural Economics Association Annual Meetings In Denver, Colorado.
Gallant, A. R. (1981). On the Bias in Flexible Functional Forms and an Essentially Unbiased Form: The Fourier Flexible Form, Journal of Econometrics 15, 211-45
Guilkey, D. K, & Lovell C. A. (1980). On the Flexibility of the Translog Approximation, International Economic Review, 21, 137-14
Kim, H. Y. (1992). The Translog Production Function and Variable Returns to Scale. The Review of Economics and Statistics, 74(3), 546-552.
Kim, K. (2019). Investigation of Japanese electricity industry using a CGE model of translog function. Economic Structures,8.
Önalan, K. and Basegmez, H. (2020). Estimation of Effect on Gross Domestic Product of Production Factors Using CES and Translog Production Functions: An Application to China Economy. Research Square
Songur, M. and Elmas, F. (2017). Cobb-Douglas, CES, VES ve Translog Üretim Fonksiyonlarının Tahminleri Üzerine Genel Bir Değerlendirme. Bulletin of Economic Theory and Analysis, 2(3), 235-278.
Stern, D. I. (1994). Accuracy of the Translog Function, Applied Economics Letters, 1, 172-174.
Umar, H.,  Girei, A. and  Yakubu, D. (2017). Comparison of Cobb-Douglas and Translog frontier models in the analysis of technical efficiency in dry-season tomato production, (AJOL), 17 (2). 67-77.
Wales, T. J. (1977). On the Flexibility of Flexible Functional Forms: An Empirical Approach, Journal of Econometrics 5, 183-93.
White, H. (1980). Using Least Squares to Approximate Unknown Regression Functions, Inter- national Economic Review, 21, 149-170.‏