In collaboration with Iranian Association for Energy Economics(IRAEE) and Scientific Association of Defence Economics of Iran(SADEI)

Document Type : applicative

Authors

1 Associate Professor of Economic ,Faculty of Administrative & Economics Sciences, Ferdowsi University of Mashhad

2 Associate Professor of Economic, Faculty of Administrative & Economics Sciences, Mazandaran University

3 Ph.D Student of Economic,Faculty of Administrative & Economics Sciences, Ferdowsi University of Mashhad

Abstract

Energy supply is one of the most important areas of economic and social development of each country and always has been raised as a key component of development planning. The demand for Gasoline in the transportation sector also reflects the needs of energy consumers for this system.Thus, Partial Least Squares Regression Technique (PLSR) is used to estimate and speculate Gasoline demand and also to study the degree of variable effects (Gasoline subsidies, gross domestic production(GDP), population as well as the rate of urbanization) in the  transportation sector. The summarized findings suggest that GDP, population, the rate of urbanization and gasoline subsidies have a meaningful and direct effects on Gasoline demand in the transportation sector. From of all, the rate of urbanization has put the most effect while energy subsidies left the least one. The estimation of diesel demand in transportation sector and its anticipation in 2021 indicate that the rate of Gasoline demand  is following an average growth degree of 5/2% annually.

Keywords

آخانی، زهرا (1378). "مدل‌های برآورد تابع تقاضای سوخت در بخش حمل ونقل"، مجله برنامه و بودجه، شماره 38و39، صص101-128.
دفتر برنامه‌ریزی کلان برق و انرژی (1391). ترازنامه­ انرژی، معاونت امور برق و انرژی، وزارت نیرو.
روابط عمومی وزارت راه وترابری (1386)، سند ملی توسعه حمل و نقل در برنامه چهارم توسعه اقتصادی، اجتماعی و فرهنگی جمهوری اسلامی ایران، نشر عیلام.
سایت آژانس بین المللی انرژی، www.iea.org .
فطرس، محمدحسن و همکاران (1392). "برآورد تابع تقاضای انرژی در بخش حمل و نقل جاده­ای ایران"، فصلنامه سیاست‌های راهبردی و کلان، شماره 7، صص 23-42.
مزرعتی، محمد (1384). "پیش­بینی مصرف گازوییل تا سال1400 و نقش مترو تهران در کاهش مصرف آن" ، فصل­نامه مطالعات اقتصاد انرژی، شماره­ 4، صص78-57.
یقینی، فروغ الزمان (1385) . حمل و نقل و شکوفایی، انتشارات ارکان دانش.
 Alexandros G., Mohamed EH. and H. Malcolm  (1970–2010)." A Longitudinal Analysis of  the UK transport sector", Energy Policy, No.37, pp.623–32.
Adegbulugde A.O. and F.B. Dayo (1986). "Demand Analysis of Gasoline Consumption in Nigeria", OPEC Review.
Edigera VS. and U. Camdali (1988–2004). "Energy and Exergy Efficiencies in Turkish Transportation Sector", Energy Policy, No.35, pp. 1238–44.
HW Wang. (1998). "Partial Least-Squares Refression Method and Applications", Beijing Defense Industry Publishing House.
 Ishis s., Tabushi T. Aramaki and K, Hanaki. (2010). "Impact of Future Urban form on the Potential to Reduce Greenhouse Gas Emission from   Residential", Commercial and Public Building Astonumiya, Japan: In Energy Policy, No. 38, pp. 4888-4896.  
Lancaster K. (1971). "Consumer Demand: A New Approach", Journal of   Economic Literature 1973, No. 11, pp. 77– 81.
Liu Weiwei (2011). "Modelling Gasoline Demand in the United States: A Flexible Semiparametric Approach", Department of Economics State University of New York at Binghamton.  
 Pagolatous J.H. (1986). "Demand for Oil Products in USA", The Iowa Economic Journal, 38(2), pp. 128-152.
Ping-Feng Pai, Wei-Chiang Hong. ( 2005 ).  "Forcasting  Reginal Electricity Load Based on Recurrent Support Vector Machines With Genetic Algorithm", Electric Power System Research, 74(3), pp. 417-425.
Redncy Samimi ( 1995). "Read Transport Energy Demand in Australia", Energy Economics, 17(4).
Totto L. and T.M. Johnson (1983, Summer). "OPEC Domestic Oil Demand: Product Forcast for 1985 & 1990", OPEC Review.
Von Moltke A. and M. Colin (2004). "Morgan(ed) Energy Subsides: Lesson Learned in Assessing Their Impact and Designing Policy Reforms [Journal] ", UNEP.   
Johansson S. et al. (1983). "Pattern Regression Finding and Using Regularities in Multivariate Data", London, Analysis Applied Science Publication.